Characterization of the ptr6(+) gene in fission yeast: a possible involvement of a transcriptional coactivator TAF in nucleocytoplasmic transport of mRNA.

نویسندگان

  • T Shibuya
  • S Tsuneyoshi
  • A K Azad
  • S Urushiyama
  • Y Ohshima
  • T Tani
چکیده

Transport of mRNA from the nucleus to the cytoplasm is one of the important steps in gene expression in eukaryotic cells. To elucidate a mechanism of mRNA export, we identified a novel ptr [poly(A)+ RNA transport] mutation, ptr6, which causes accumulation of mRNA in the nucleus and inhibition of growth at the nonpermissive temperature. The ptr6(+) gene was found to encode an essential protein of 393 amino acids, which shares significant homology in amino acid sequence with yTAFII67 of budding yeast Saccharomyces cerevisiae and human hTAFII55, a subunit of the general transcription factor complex TFIID. A Ptr6p-GFP fusion protein is localized in the nucleus, suggesting that Ptr6p functions there. Northern blot analysis using probes for 10 distinct mRNAs showed that the amount of tbp+ mRNA encoding the TATA-binding protein is increased five- to sixfold, whereas amounts of others are rapidly decreased at the nonpermissive temperature in ptr6-1. ptr6 has no defects in nuclear import of an NLS-GFP fusion protein. These results suggest that Ptr6p required for mRNA transport is a Schizosaccharomyces pombe homologue of yTAFII67 and hTAFII55. This is the first report suggesting that a TAF is involved in the nucleocytoplasmic transport of mRNA in addition to the transcription of the protein-coding genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel

Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...

متن کامل

A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control

How cells control the overall size and growth of membrane-bound organelles is an important unanswered question of cell biology. Fission yeast cells maintain a nuclear size proportional to cellular size, resulting in a constant ratio between nuclear and cellular volumes (N/C ratio). We have conducted a genome-wide visual screen of a fission yeast gene deletion collection for viable mutants alter...

متن کامل

Transcriptional Coactivator CBP Facilitates Transcription Initiation and Reinitiation of HTLV-I and Cyclin D2 Promoter

HTLV-I is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Taxi, the major activator of this virus, is a 40- kDa (353 amino acid) phosphoprotein, predominantly localized in the nucleus of the host cell, which functions to trans-activate both viral and cellular promoters. Recently it has been shown that HTLV-I a...

متن کامل

A Subset of TAFIIs Are Integral Components of the SAGA Complex Required for Nucleosome Acetylation and Transcriptional Stimulation

A number of transcriptional coactivator proteins have been identified as histone acetyltransferase (HAT) proteins, providing a direct molecular basis for the coupling of histone acetylation and transcriptional activation. The yeast Spt-Ada-Gcn5-acetyltransferase (SAGA) complex requires the coactivator protein Gcn5 for HAT activity. Identification of protein subunits by mass spectrometry and imm...

متن کامل

The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB.

A specific TATA binding protein-associated factor (TAF), dTAF(II)110/hTAF(II)135, interacts with cAMP response element binding protein (CREB) through its constitutive activation domain (CAD), which recruits a polymerase complex and activates transcription. The simplest explanation is that the TAF is a coactivator, but several studies have questioned this role of TAFs. Using a reverse two-hybrid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 152 3  شماره 

صفحات  -

تاریخ انتشار 1999